List of equations in fluid mechanics

This article summarizes equations in the theory of fluid mechanics.

DefinitionsEdit

Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or dS equivalently (resolved into components, θ is angle to normal n). F•dS is the component of flux passing through the surface, multiplied by the area of the surface (see dot product). For this reason flux represents physically a flow per unit area.

Here  \mathbf{\hat{t}} \,\! is a unit vector in the direction of the flow/current/flux.

Quantity (common name/s)(Common) symbol/sDefining equationSI unitsDimension
Flow velocity vector fieldu \mathbf{u}=\mathbf{u}\left ( \mathbf{r},t \right ) \,\!m s−1[L][T]−1
Velocity pseudovector fieldω \boldsymbol{\omega} = \nabla\times\mathbf{v} s−1[T]−1
Volume velocity, volume fluxφV (no standard symbol)\phi_V = \int_S \mathbf{u} \cdot \mathrm{d}\mathbf{A}\,\!m3 s−1[L]3 [T]−1
Mass current per unit volumes (no standard symbol)s = \mathrm{d}\rho / \mathrm{d}t \,\!kg m−3 s−1[M] [L]−3 [T]−1
Mass current, mass flow rateIm I_\mathrm{m} = \mathrm{d} m/\mathrm{d} t \,\!kg s−1[M][T]−1
Mass current densityjm I_\mathrm{m} = \iint \mathbf{j}_\mathrm{m} \cdot \mathrm{d}\mathbf{S} \,\!kg m−2 s−1[M][L]−2[T]−1
Momentum currentIp I_\mathrm{p} = \mathrm{d} \left | \mathbf{p} \right |/\mathrm{d} t \,\!kg m s−2[M][L][T]−2
Momentum current densityjp I_\mathrm{p} =\iint \mathbf{j}_\mathrm{p} \cdot \mathrm{d}\mathbf{S} kg m s−2[M][L][T]−2

EquationsEdit

Physical situationNomenclatureEquations
Fluid statics,
pressure gradient
  • r = Position
  • ρ = ρ(r) = Fluid density at gravitational equipotential containing r
  • g = g(r) = Gravitational field strength at point r
  • P = Pressure gradient
 \nabla P = \rho \mathbf{g}\,\!
Buoyancy equations
  • ρf = Mass density of the fluid
  • Vimm = Immersed volume of body in fluid
  • Fb = Buoyant force
  • Fg = Gravitational force
  • Wapp = Apparent weight of immersed body
  • W = Actual weight of immersed body
Buoyant force

\mathbf{F}_\mathrm{b} = - \rho_f V_\mathrm{imm} \mathbf{g} = - \mathbf{F}_\mathrm{g}\,\!

Apparent weight
\mathbf{W}_\mathrm{app} = \mathbf{W} - \mathbf{F}_\mathrm{b}\,\!

Bernoulli's equationpconstant is the total pressure at a point on a streamlinep+\rho u^{2}/2+\rho gy=p_{{\mathrm  {constant}}}\,\!
Euler equations
  • ρ = fluid mass density
  • u is the flow velocity vector
  • E = total volume energy density
  • U = internal energy per unit mass of fluid
  • p = pressure
  • \otimes  denotes the tensor product
\frac{\partial\rho}{\partial t}+\nabla\cdot(\rho\mathbf{u})=0\,\!

\frac{\partial\rho{\mathbf{u}}}{\partial t} + \nabla \cdot \left ( \mathbf{u}\otimes \left ( \rho \mathbf{u} \right ) \right )+\nabla p=0\,\!
{\displaystyle {\frac {\partial E}{\partial t}}+\nabla \cdot \left(\mathbf {u} \left(E+p\right)\right)=0\,\!}
E=\rho \left(U+{\frac  {1}{2}}{\mathbf  {u}}^{2}\right)\,\!

Convective acceleration{\mathbf  {a}}=\left({\mathbf  {u}}\cdot \nabla \right){\mathbf  {u}}
Navier–Stokes equations
  • TD = Deviatoric stress tensor
  • \mathbf{f}  = volume density of the body forces acting on the fluid
  • \nabla  here is the del operator.
\rho \left({\frac  {\partial {\mathbf  {u}}}{\partial t}}+{\mathbf  {u}}\cdot \nabla {\mathbf  {u}}\right)=-\nabla p+\nabla \cdot {\mathbf  {T}}_{{\mathrm  {D}}}+{\mathbf  {f}}


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.