Milne-Thomson circle theorem

In fluid dynamics the Milne-Thomson circle theorem or the circle theorem is a statement giving a new stream function for a fluid flow when a cylinder is placed into that flow.[1][2] It was named after the English mathematician L. M. Milne-Thomson.

Let  be the complex potential for a fluid flow, where all singularities of  lie in . If a circle  is placed into that flow, the complex potential for the new flow is given by[3]

with same singularities as  in  and  is a streamline. On the circle , therefore

ExampleEdit

Consider a uniform irrotational flow {\displaystyle f(z)=Uz} with velocity U flowing in the positive x direction and place an infinitely long cylinder of radius a in the flow with the center of the cylinder at the origin. Then {\displaystyle f\left({\frac {a^{2}}{\bar {z}}}\right)={\frac {Ua^{2}}{\bar {z}}},\ \Rightarrow \ {\overline {f\left({\frac {a^{2}}{\bar {z}}}\right)}}={\frac {Ua^{2}}{z}}}, hence using circle theorem,

{\displaystyle w(z)=U\left(z+{\frac {a^{2}}{z}}\right)}

represents the complex potential of uniform flow over a cylinder. 


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.