Simple shear

Simple shear is a deformation in which parallel planes in a material remain parallel and maintain a constant distance, while translating relative to each other.

SIMPLE SHEAR

In fluid mechanicsEdit

In fluid mechanicssimple shear is a special case of deformation where only one component of velocity vectors has a non-zero value:

{\displaystyle V_{x}=f(x,y)}
{\displaystyle V_{y}=V_{z}=0}

And the gradient of velocity is constant and perpendicular to the velocity itself:

{\frac {\partial V_{x}}{\partial y}}={\dot {\gamma }},

where {\dot {\gamma }} is the shear rate and:

{\frac {\partial V_{x}}{\partial x}}={\frac {\partial V_{x}}{\partial z}}=0

The displacement gradient tensor Γ for this deformation has only one nonzero term:

\Gamma ={\begin{bmatrix}0&{\dot {\gamma }}&0\\0&0&0\\0&0&0\end{bmatrix}}

Simple shear with the rate {\dot {\gamma }} is the combination of pure shear strain with the rate of 1/2{\dot {\gamma }} and rotation with the rate of 1/2{\dot {\gamma }}:

{\displaystyle \Gamma ={\begin{matrix}\underbrace {\begin{bmatrix}0&{\dot {\gamma }}&0\\0&0&0\\0&0&0\end{bmatrix}} \\{\mbox{simple shear}}\end{matrix}}={\begin{matrix}\underbrace {\begin{bmatrix}0&{{\tfrac {1}{2}}{\dot {\gamma }}}&0\\{{\tfrac {1}{2}}{\dot {\gamma }}}&0&0\\0&0&0\end{bmatrix}} \\{\mbox{pure shear}}\end{matrix}}+{\begin{matrix}\underbrace {\begin{bmatrix}0&{{\tfrac {1}{2}}{\dot {\gamma }}}&0\\{-{{\tfrac {1}{2}}{\dot {\gamma }}}}&0&0\\0&0&0\end{bmatrix}} \\{\mbox{solid rotation}}\end{matrix}}}

The mathematical model representing simple shear is a shear mapping restricted to the physical limits. It is an elementary linear transformation represented by a matrix. The model may represent laminar flow velocity at varying depths of a long channel with constant cross-section. Limited shear deformation is also used in vibration control, for instance base isolation of buildings for limiting earthquake damage.

In solid mechanicsEdit

In solid mechanics, a simple shear deformation is defined as an isochoric plane deformation in which there are a set of line elements with a given reference orientation that do not change length and orientation during the deformation.[1] This deformation is differentiated from a pure shear by virtue of the presence of a rigid rotation of the material.[2][3] When rubber deforms under simple shear, its stress-strain behavior is approximately linear.[4] A rod under torsion is a practical example for a body under simple shear.[5]

If e1 is the fixed reference orientation in which line elements do not deform during the deformation and e1 − e2 is the plane of deformation, then the deformation gradient in simple shear can be expressed as

{\displaystyle {\boldsymbol {F}}={\begin{bmatrix}1&\gamma &0\\0&1&0\\0&0&1\end{bmatrix}}.}

We can also write the deformation gradient as

{\displaystyle {\boldsymbol {F}}={\boldsymbol {\mathit {1}}}+\gamma \mathbf {e} _{1}\otimes \mathbf {e} _{2}.}

Simple shear stress–strain relationEdit

In linear elasticity, shear stress, denoted \tau , is related to shear strain, denoted \gamma , by the following equation:[6]

\tau = \gamma G\,

where G is the shear modulus of the material, given by

 G = \frac{E}{2(1+\nu)}

Here E is Young's modulus and \nu  is Poisson's ratio. Combining gives

\tau = \frac{\gamma E}{2(1+\nu)} 


This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.